
Travaux dirigés d'Electrocinétique n°5

Résonances en RSF

Exercice 1 : Circuit *RLC* série en RSF.

On considère le circuit ci-contre alimenté par le générateur de tension de f.e.m e(t) sinusoïdale de fréquence f=50Hz, R=500 Ω , L=0,1H et C=1 μ F. La valeur efficace du courant traversant le circuit est I_{eff} =0,03A. En prenant l'intensité comme origine des phases, c'est à dire $i(t) = I_m \cos \omega t$, déterminer e(t).

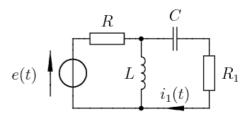
Exercice 2 : Quartz Piezo-électrique : résonance et antirésonance.

On considère, comme schéma électrique simplifié équivalent d'un quartz piézo-électrique destiné à servir d'étalon de fréquence dans une horloge, un dipôle AB composé de deux branches en parallèle. Dans l'une, une inductance L pure en série avec un condensateur de capacité C; dans l'autre, un condensateur de capacité C_0 . On posera $\frac{C}{C_0} = a$, et on gardera les variables L, C_0 , ω et a.

- 1. Le dipôle AB étant alimenté par une tension sinusoïdale de pulsation ω , calculer l'impédance complexe $\underline{Z}_{AB} = \underline{Z}$. Calculer son module $|\underline{Z}| = \underline{Z}$, et son argument φ .
- 2. Etudier en fonction de la pulsation l'impédance Z; pour cela :
- on précisera tout particulièrement les limites de Z quand ω tend vers zéro ou l'infini ;
- on appellera ω_1 et ω_2 les valeurs finies non nulles de la pulsation pour lesquelles Z est respectivement nulle et infinie. Quel est le comportement électrique simple de AB pour $\omega = \omega_1$ et $\omega = \omega_2$? Donner $Z = f(C_0, \omega, \omega_1, \omega_2)$.
- 3. Représenter graphiquement Z en fonction de ω.
- 4. Préciser par un graphe à main levée, et sans aucun calcul, comment qualitativement est modifiée la courbe $Z=f(\omega)$ si l'on tient compte de la résistance du bobinage d'inductance L.

Exercice 3 : Circuit RLC parallèle en RSF.

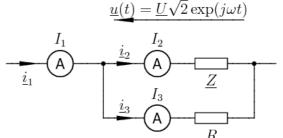
- 1. On considère un circuit RLC parallèle en régime alternatif sinusoïdal. Exprimer l'admittance complexe Y de ce circuit.
- 2. Mettre \underline{Y} sous la forme réduite en l'exprimant uniquement en fonction de R, Q (facteur de qualité) et u (pulsation réduite) avec :


$$Q = RC\omega_0 = \frac{R}{L\omega_0} = R\sqrt{\frac{C}{L}} \text{ et } u = \frac{\omega}{\omega_0} = \omega\sqrt{LC}$$

- 3. En déduire l'impédance complexe \underline{Z} en fonction des mêmes variables réduites. Etudier les variations du module de \underline{Z} en fonction de la fréquence. On montrera la présence d'un maximum que l'on précisera. Trouver les deux valeurs u_1 et u_2 pour lesquelles $|\underline{Z}| = \frac{R}{\sqrt{2}}$.
- 4. Montrer que $|u_2 u_1| = \frac{1}{Q}$. A la fréquence de résonance, quelle est l'impédance simple équivalente du circuit ?
- 5. Que se passe-t-il loin de la fréquence de résonance ?

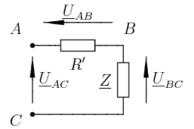
Puissance moyenne en RSF

Exercice 4: Puissance moyenne


On considère le circuit représenté ci-contre. Il est alimenté par un générateur délivrant une tension sinusoïdale $e(t) = E_0 \sqrt{2} \sin \omega t$. Calculer la puissance moyenne dissipée dans le résistor de résistance R_1 .

Exercice 5 : Mesure d'une puissance moyenne : méthode des trois ampèremètres.

On peut déterminer le facteur de puissance d'un dipôle quelconque \underline{Z} alimenté en RSF en utilisant le montage représenté ci-contre.


- 1. Quelle est puissance moyenne consommée dans \underline{Z} en fonction de ces trois intensités et de R?
- 2. Application : Un abonné EDF (U=220V, 50Hz) branche soit une plaque chauffante (I_3 =12A), soit un moteur inductif (I_2 =30A), soit les deux en parallèle (I_1 =40A). En déduire le facteur de puissance de \underline{Z} .

Exercice 6 : Mesure d'une puissance moyenne : méthode des trois voltmètres

Pour mesurer la puissance moyenne consommée par une impédance Z=R+jX, on fait successivement trois mesures de tension : U_{AB} , U_{BC} et U_{AC} .

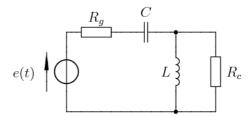
- 1. Montrer que l'on peut écrire la puissance consommée dans l'impédance Z en fonction de U_{AB} , U_{BC} , U_{AC} et de R' seulement.
- 2. Calculer cette puissance pour U_{AB} =30V, U_{BC} =153V, U_{AC} =178V et R'=10 Ω .
- 3. En déduire la résistance R et la réactance X du dipôle BC.

Exercice 7 : Relèvement d'un facteur de puissance.

Un moteur électrique (inductif) fonctionnant sous une tension efficace U=220V et une fréquence f=50Hz consomme une puissance P=5kW. Son facteur de puissance est $\cos \varphi = 0.7$.

- 1. Déterminer l'expression i(t) de l'intensité du courant qui le traverse.
- 2. Déterminer la capacité C du condensateur à placer en dérivation sur le moteur pour relever le facteur de puissance à 1.
- 3. Même question si on veut un facteur de puissance 0,9 : C'.

Exercice 8 : Facteur de puissance, méthode de Fresnel


Un abonné de l'EDF dispose d'une source de tension sinusoïdale de fréquence 50Hz et de valeur efficace U=220V.

- 1. Il branche un appareil de chauffage (purement résistif) qui consomme P₁=1kW et un moteur inductif (modélisable par une résistance A et une réactance B : Z=A+jB) de puissance moyenne P_2 =2kW et de facteur de puissance $\cos \varphi_2 = 0.5$. Définir les intensités efficaces complexes \underline{I}_1 et \underline{I}_2 dans les deux dérivations et <u>I</u> dans la ligne d'alimentation et en déduire le facteur de puissance de l'installation.
- 2. L'EDF recommande d'améliorer le facteur de puissance. Pour cela on adjoint un condensateur en dérivation. Quelle est la valeur de C qui permet d'obtenir un facteur de puissance égal à 1 ?

Exercice 9 : Adaptation d'impédance

Un générateur de tension alternative sinusoïdale de f.e.m $e(t) = E_0 \sqrt{2} \cos \omega t$ et d'impédance interne complexe Z=R+jX alimente une charge d'impédance complexe Z'=R'+jX'.

- 1. Montrer que la puissance électrique reçue par la charge est maximale si $\underline{Z}'=\underline{Z}^*$ où \underline{Z}^* est le conjugué de Z.
- 2. On suppose dans cette question, que Z est réelle et vaut Rg et que la charge est aussi réelle et a pour valeur R_C. Pour réaliser l'adaptation en puissance, on intercale entre le générateur et la charge, un module L-C selon le schéma ci-contre. Montrer que l'adaptation n'est possible que si R_c>R_g et exprimer L et C en fonction des données.

Exercice 10 : Aspect énergétique du facteur de qualité

Calculer l'énergie électromagnétique ε emmagasinée à l'instant t dans un dipôle RLC série fonctionnant en régime sinusoïdal forcé.

Vérifier que ε est indépendant de t à la résonance d'intensité ($\omega = \omega_0$).

Interpréter ce résultat à l'aide d'un bilan énergétique.

Pour $\omega \neq \omega_0$, calculer la moyenne temporelle $<\epsilon>$ de ϵ ainsi que l'énergie W dissipée dans le dipôle en une période T.

Montrer que $\frac{\langle \varepsilon \rangle}{W}$ s'exprime simplement en fonction du facteur de qualité Q du dipôle et du rapport

$$u = \frac{\omega}{\omega_0}$$
.

Examiner le cas particulier u=1 et proposer une définition énergétique du facteur de qualité Q.